КАЗАХСКИЙ НАЦИОНАЛЬНЫЙ УНИВЕРСИТЕТ ИМ. АЛЬ-ФАРАБИ Физико-технический факультет Кафедра физики твердого тела и нелинейной физики

УТВЕРЖДАЮ)
Декан факуль	тета
20.06.2010	_ Давлетов А. Е.
20. 06. 2019 г.	

УЧЕБНО-МЕТОДИЧЕСКИЙ КОМПЛЕКС ДИСЦИПЛИНЫ ООІ 2203 – ОПТИКА И ОПТИЧЕСКИЕ ИЗМЕРЕНИЯ

Образовательная программа 5В073200 - Стандартизация и сертификация

Курс 2 Семестр 4 Количество кредитов – 3

преподавателем КФТТиНФ Мигуновой А. А.	ПЛИНЫ	составлен	старши
На основании рабочего учебного плана по обра 5В073200 – Стандартизация и сертификация	азователь	ной программ	1e
Рассмотрен и рекомендован на заседании кафед нелинейной физики	дры физи	ки твердого т	ела и
от 17. 06. 2019 г., протокол № 41			
Заведующий кафедрой	Ибраимо	ов М. К.	
Рекомендован методическим бюро факультета			
19. 06. 2019 г., протокол № 11			
Председатель методбюро факультета		_ Габдуллина	A. T.

СИЛЛАБУС 4 семестр 2019-2020 уч. год

Код	Название дисциплины	Тип		Кол-во часов в		Кол-во		ECTS	
дисциплины			неделю				К	редитов	
0.010000			Лек	H	эакт	Лаб			
OOI2203	Оптика и оптические		1		1	2		3	
	измерения								
Лектор	Мигунова Анастасия				Офі	ис-часы		По распи	исанию
e-mail	Anastassiya.migunova		l.com						
Телефон	70544335				Ayı	цитория		520,	213
Академическая									
презентация	Цель курса: Освоить								
курса	геометрической оптики	, явлени	ия волн	ово	йин	квантовс	Й	оптики, и	змерять
	длину волны излучени	ия, пок	азатель	пр	елом	іления і	веі	цества и	другие
	оптические характерист	ики.							
	РК1 включает ре		-		све	тотехни		-	метрию,
	1 1	метриче	-			іку.			ключает
	интерференционные и	дифра	акционі	ные	ЯВЈ	гения,	ПО	ляризацин	o. PK3
	продолжается изучение								
	тепловое излучение,							глощение	
	материалами, голограф								
	понимания фундамент					влений.	Ι	Ірограмма	курса
	позволяет сдать тестовы								
	Компетенции. В резуль								
	1. Знать основополагаю	щие пр	инципы	по	стро	ения изс	обр	ражений с	огласно
	геометрической оптике								
	2. Иметь представлени				-		И	явления	іх при
	взаимодействии электро								
	3. Разбираться в способа	ах генер	ации, р	еги	страц	(ии и упј	pai	вления све	товыми
	потоками								
	4. Уметь анализировать								
	5. Понимать назначение	е и мет	годики	pac	оты	специа	ЛЫ	ного опти	ческого
	оборудования		_						
	6. Выполнять расчеты в								
	7. Использовать базовы	ые теор	ретичес:	кие	зна	ния пр	И	самостоя	тельной
	постановке задач		1					_	
	8. Применять совреме		физиче			иодели		ля обосі	нования
	собственных результато					-			
	9. Владеть методом ср							-	-
	материалов из теорети	ических	расчет	гов,	ИЗ	экспери	IMC	ента, спра	вочных
	данных								
Пререквизиты	Математика 1,2, Матема	тически	ій аналі	ИЗ					
Пострекви-	Атомная физика								
ЗИТЫ									
Информа-	Учебная литература:								
ционные	1 Ландсберг Г. С. Опти								
ресурсы	2 Стафеев С. К., Боярс								
	3 Трофимова Т. И. С		физики	и. К	Снига	4: Boj	ТНС	овая и кв	антовая
	оптика. – 2007. – 215								
	4 Калитеевский Н. И. 1	Волнова	я оптин	(a. –	- 2006	5, 2008			

	5 Ахманов С. А., Никитин С. Ю. Физическая оптика. – 2004		
	6 Бычков Р. М., Чугуй Ю. В. Беседы о геометрической оптике. – 2011		
	7 Лебедева В. В. Экспериментальная оптика. – 2005. – 282 с.		
	8 Иродов И. Е. Задачи по общей физике. – 2002, 2006, 2007, 2010		
	9 Волькенштейн В. С. Сборник задач по общему курсу физики. – 1985,		
	1990, 2005, 2006, 2008		
	10 Трофимова Т.И., Павлова З.Г. Сборник задач по курсу физики. – 2005, 2008		
Академическая	Правила академического поведения:		
политика	Обязательное соблюдение сроков выполнения и сдачи заданий (домашних		
курса в	заданий, СРС, рубежных, контрольных, лабораторных, проектных и др.).		
контексте	За консультациями по выполнению самостоятельных работ (СРС), их		
университетск	сдачей и защитой, а также за дополнительной информацией по		
их ценностей	пройденному материалу и всеми другими возникающими вопросами по		
	читаемому курсу обращайтесь к преподавателю в период его офис-часов.		
	Академические ценности: академическая честность, самостоятельное		
	выполнение всех заданий, недопустимость плагиата, подлога,		
	использования шпаргалок, списывания на всех этапах контроля знаний,		
	обмана преподавателя и неуважительного отношения к нему		
Политика	Критериальное оценивание: оценивание результатов обучения в		
оценивания и	соотнесенности с дескрипторами (проверка сформированности		
аттестации	компетенций на рубежных контролях и экзамене).		
	Суммативное оценивание:		
	Отлично: (95-100)% = А (90-94)% = А-		
	Хорошо: (85-89)% = В+ (80-84)% = В (75-79)% = В- (70-74)% = С+		
	Удовлетворительно: $(65-69)\% = C$, $(60-64)\% = C-$, $(55-59)\% = D+$,		
	(50-54)% = D		
	(25-49)%=FX (неудовлетворительно с возможностью пересдачи на платной		
	основе экзамена без повторного обучения по дисциплине)		
	(0-24)% = Г (неудовлетворительно)		
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		

Календарь реализации содержания учебного курса

Не			Макси
де-	Название темы	Кол-во	маль-
ЛЯ	Пазванис темы	часов	ный
			балл
1	Лекция 1. Преломление. Закон Снеллиуса. Полное внутреннее	1	-
	отражение. Электромагнитная шкала. Призмы. Дисперсия.		
	Нормальная и аномальна дисперсия, спектры поглощения молекул.		
	Взаимодействие света с материалами. Комплексные величины		
	показателя преломления, диэлектрической проницаемости и		
	коэффициента отражения. Скин-эффект в металлах		
	Практическое занятие 1. Расчет спектральных характеристик	1	8
	призмы, толщины скин-слоя алюминия, коэффициентов		
	поглощения кремния и др.		
	Лабораторное занятие 1: Измерение показателей преломления	2	4
	жидкостей методом рефрактометра		
2	Лекция 2. Цвет. Локус. Цветовые координаты. Световые и	1	_
	энергетические характеристики света. Сила света, яркость,		

	освещенность, светимость. Ламбертов излучатель. Кривая		
	видности (относительная спектральная чувствительность)		
ŀ	Практическое занятие 2. Фотометрические расчеты (яркость и	1	9
	сила света источников, освещенность поверхностей), определение		
	цвета излучателей, имеющих две спектральные линии известной		
	яркости, установление цвета при смешении цветовых компонент		
	светодиодов		
	Лабораторное занятие 1: Измерение показателей преломления	2	8
	жидкостей методом рефрактометра	_	
3	Лекция 3. Геометрическая оптика. Сферические зеркала. Тонкие	1	_
3	линзы. Системы тонких линз	1	
-	Практическое занятие 3. Вычисление фокусного расстояния двух	1	8
	линз, построение изображений и восстановление объектов при	1	
	различном расположении относительно зеркал и линз		
	Лабораторное занятие 2: Определение показателей преломления		
	стеклянной пластины при помощи микроскопа	2	12
}	СРСП. Сдача задания 1: Метаматериалы с отрицательным	1	5
	показателем преломления. Плазменная частота колебаний.	1	3
	Оптические фильтры. Фотоаппарат. Лупа. Подзорная труба.		
	Телескоп. Микроскоп. Контактные линзы. Очки (презентация)		
4	Лекция 4. Толстые линзы. Строение человеческого глаза.	1	-
-	Близорукость, дальнозоркость		
	Практическое занятие 4. Определение расстояний до объектов и	1	9
	изображений по характеристикам толстых линз. Расчет увеличения		
	линз. Построение хода лучей в толстых линзах	2	10
	Лабораторное занятие (вирт) 3: Исследование работы тонкой	2	12
_	линзы со сферическими поверхностями		
5	Лекция 5. Интерференция света. Принцип Гюйгенса-Френеля.	1	-
	Понятие когерентности. Волновой пакет. Групповая и фазовая		
	скорости. Стоячие волны. Интерферометр Майкельсона.		
-	Интерферометр Фабри-Перо. Просветляющие покрытия	4	0
	Практическое занятие 5. Определение максимальной	1	8
	интенсивности результирующей волны, расстояния между		
	интерференционными полосами	2	10
	Лабораторное занятие (вирт) 4: Исследование явления	2	12
	интерференции лучей от двух тонких щелей		
	СРСП. Сдача задания 2: Аберрации (сферическая и	1	5
	хроматическая). Астигматизм. Кома. Дисторсия. Излучение		
	Вавилова – Черенкова. Фазированные решётки. Применение		
	многолучевой интерференции (презентация)		
Ī	Рубежный контроль 1	-	100
6	Лекция 6. Получение когерентных волн методом деления	1	-
	волнового фронта. Опыт Юнга. Получение когерентных волн		
	методом деления амплитуды. Линза Бийе, Билинза Френеля.		
	Зеркало Ллойда. Полосы равного наклона. Полосы равной		
	толщины. Кольца Ньютона		
ļ	Практическое занятие 6. Тонкие мыльные пленки, клин – расчет	1	9
	интерференционных картин. Расчет колец Ньютона		
	Лабораторное занятие 5: Определение длины световой волны с	2	5
	помощью колец Ньютона		

	Франала Лифранция Франала на шани		
	Френеля. Дифракция Френеля на щели	1	9
	Практическое занятие 7. Построение векторных диаграмм. Расчет дифракционной картины на одиночной щели	1	9
	Лабораторное занятие 5: Определение длины световой волны с	2	12
		2	12
	помощью колец Ньютона	1	
	СРСП. Сдача задания 3: Дифракция на малом отверстии.	1	5
	Дифракция на круглом экране. Дифракционные спектральные		
	приборы и их основные характеристики (презентация)	4	
8	Лекция 8 . Векторные диаграммы. Спираль Корню. Дифракция на	1	-
	полуплоскости. Зоны Шустера		0
	Практическое занятие 8. Расчет интенсивности в точке	1	8
	интерференционной картины с анализом ее изменения при		
	изменении соотношения зон Френеля и дифракционного		
	препятствия		
	Лабораторное занятие 6: Проверка закона Малюса	2	12
9	Лекция 9. Дифракция Фраунгофера в параллельных лучах на	1	-
	щели. Построение зон Френеля в случае дифракции Фраунгофера.		
	Дифракционные спектры. Дифракционная решетка. Разрешающая		
	способность оптических приборов. Критерий Рэлея		
	Практическое занятие 9. Расчет дифракционной картины в	1	9
	случае нормального и наклонного падения лучей на		
	дифракционную решетку. Расчет параметров кристаллической		
	решетки по картинам рентгеновской и электронной дифракции		
	Лабораторное занятие 7: Определение длины световой волны при	2	5
	помощи бипризмы Френеля		
	СРСП. Сдача задания 4: Атомная структура кристалла как	1	5
	дифракционная решетка. Уравнение Вульфа-Брэггов. Дифракция		
	электронов в электронных микроскопах и связь со структурой		
	исследуемого материала. Фотонные кристаллы (презентация)		
10	Лекция 10. Поляризация света. Линейно-поляризованный и	1	_
	эллиптически-поляризованный свет. Закон Малюса. Поляризатор и	-	
	анализатор. Поляризация света на границе раздела двух сред.		
	Закон Брюстера. Призма Николя. Формулы Френеля на интерфейсе		
	двух сред		
	Практическое занятие 10. Определение интенсивности луча,	1	9
	прошедшего систему трех поляризаторов. Расчет углов плоскостей	1	
	поляризации по формулам Френеля		
	Лабораторное занятие 7: Определение длины световой волны при	2	12
	помощи бипризмы Френеля	<u> </u>	12
	Рубежный контроль 1	_	100
11	Лекция 11. Обыкновенный и необыкновенный лучи. Вращение	<u>-</u> 1	100
11	плоскости поляризации. Право- и левовращающие оптически	1	_
	активные вещества. Получение эллиптически поляризованного света. Анализ поляризованного света. Прохождение		
	плоскополяризованного света свозь кристаллическую пластинку.		
	Интерференция поляризованного света. Основы кристаллооптики.		
	Анизотропные среды. Одноосные отрицательный и		
	положительный, двуосные кристаллы	1	10
	Практическое занятие 11. Определение направления	1	10
	распространения обыкновенного и необыкновенного лучей при		
	падении поляризованного света на поверхность анизотропного		
	кристалла		

	Лабораторное занятие 8: Изучение спектров испускания и	2	4
	поглощения с помощью стилоскопа		
	СРСП. Сдача задания 5: Полихроизм. Компенсаторы. Эффект	1	5
	Поккельса (презентация)		
12	Лекция 12. Квантовая природа излучения. Основные	1	-
	характеристики теплового излучения. Черное и серое тела. Закон		
	Кирхгофа. Законы Стефана-Больцмана. Закон смещения Вина.		
	Формула Планка. Формула Рэлея-Джинса		
	Практическое занятие 12. Определение цветовой и яркостной	1	10
	температур, температуры и длины волны излучения абсолютно		
	черных и серых тел в определенных условиях		
	Лабораторное занятие 8: Изучение спектров испускания и	2	8
	поглощения с помощью стилоскопа		
13	Лекция 13. Фотоэлектрический эффект. Внешний и внутренний	1	-
	фотоэффект. Законы фотоэффекта		
	Практическое занятие 13. Расчет эмиссионных характеристик	1	9
	фотокатодов		
	Лабораторное занятие 9. Изучение законов фотоэффекта	2	12
14	Лекция 14. Поглощение света. Закон Бугера-Ламберта.	1	-
	Люминесценция. Генерация излучения в лазерах. Понятие		
	спонтанного и вынужденного излучения		
	Практическое занятие 14. Расчет характеристик твердотельных	1	10
	лазеров: энергии, мощности, яркости излучения		
	Лабораторное занятие 10. Исследование закона Бугера	2	4
	СРСП. Сдача задания 6: Рассеяние Рэлея и рассеяние Ми.	1	5
	Рассеяние Мандельштама-Бриллюэна. Оптическая пирометрия.		
	Источники света. Инфракрасная спектроскопия. Фотоэлементы и		
	их применение. Солнечные элементы и батареи. Концентраторы на		
	солнечных элементах. Оптоэлектроника. Оптопара (презентация)		
	Лекция 15. Голография. Запись и воспроизведение голограмм.	1	-
	Эффект Доплера. Эффект Комптона		
	Практическое занятие 15. Расчет размеров голографического	1	10
	носителя и записанных на нем деталей. Определение видимых		
	изменений источника и приемника излучения при их взаимном		
15	движении		
	Лабораторное занятие 10. Исследование закона Бугера	2	8
	СРСП. Сдача задания 7: Атмосферные оптические явления: гало,	1	5
	мираж, глория, полярные сияния, радуга, световые столбы, ложные		
	солнца (презентация)		
	Рубежный контроль 3		100
	Экзамен	2	100

Лектор, старший преподаватель

Мигунова А. А.

Заведующий кафедрой ФТТиНФ

Ибраимов М. К.

Председатель Методбюро

Габдуллина А. Т.